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ABSTRACT

MITRE has implemented the Battlefield Environment Model (BEM) in
ROSS , an object-oriented programming language, to provide a demonstration
facility and basis for the evaluation of object-oriented programming for the
Army hierarchy of combat models. The BEM was constructed in the MITRE
Secure Processing Laboratory located in the MITRE Washington offies. This
paper discusses object-oriented programming, describes the BEM and provides
findings and observations on the implementation of BEM in ROSS and the
utility of object-oriented programming.

'I 
-

-iii- 0Orietnal contains color
platest All DTIC roprodueo.
Lon vLU be In blaek aa
white@



ACKNOWLEDGEMENTS

The author thanks the many people who contributed to this evaluation.
In particular thanks are given to Dr. Phil Klahr and Dave MacArthur at the
Rand Corporation for providing the computer files, documentation and
assistance in bringing up ROSS and SWIRL at MITRE. Within MITRE thanks
are given to Bob Conker, Jim Antonisse, Ari Zymelman, John Davidson and
Francoise Youssefi for their comments on ROSS and object-oriented
programming.

-iv-



TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS viii

1.0 INTRODUCTION I

1.1 Purpose and Scope 1
1.2 Methodology 1
1.3 Brief Description of Object-Oriented Programming 4
1.4 Evaluation Criteria 4
1.5 Synopsis of Findings 5
1.6 Report Overview 7

2.0 OBJECT-ORIENTED PROGRAMMING 8

2.1 Concepts 8
2.2 ROSS 9

2.2.1 Background 9
2.2.2 Description of ROSS Basic Features 9
2.2.3 Actor Creation and Manipulation 13
2.2.4 Conduct of the Simulation 16
2.2.5 Other Facilities 19

2.3 Other Object-Oriented Languages 20

2.3.1 SIMULA 20
2.3.2 ACTORS 20
2.3.3 SMALLTALK 20
2.3.4 DIRECTOR 21
2.3.5 LOGO 21
2.3.6 FLAVORS 212.3.7 LOOPS 21

3.0 DESCRIPTION OF THE BATTLEFIELD ENVIRONMENT
MODEL (BEM) 22

3.1 Model Overview 22
3.2 Scenario 22
3.3 Actor-Objects in the Simulation 22

3.3.1 The Simulator 24
3.3.2 The Sector 28
3.3.3 The Artist 30
3.3.4 The Pathfinder 31
3.3.5 The Mathematician 31

.-.



TABLE OF CONTENTS

(Cont=ed) Page

3.3.6 The Interface 32
3.3.7 The Control-Unit 32
3.3.8 The Action-Unit 33
3.3.9 The Sensor-Control-Unit 33
3.3.10 The Sensor-Action-Unit 33

3.4 Demonstration Facility 34

3.4.1 BEM Work Stations 34

3.4.2 Briefing Facility 37

4.0 FINDINGS AND OBSERVATIONS 39

4.1 Processing Speed 39

4.1.1 Desirability 39
4.1.2 Capability 39

4.2 Processing Capability 40

4.2.1 Desirability 40
4.2.2 Capability 41

4.3 Graphical Interface 41

4.3.1 Desirability 41
4.3.2 Capability 42

4.4 Ease of Program Construction and Modification 42

4.4.1 Desirability 42
4.4.2 Capability 43

4.5 Traceability 43

4.5.1 Desirability 43
4.5.2 Capability 44

4.6 Intelligibility 44

4.6.1 Desirability 44
4.6.2 Capability 44

-vi-



I

TABLE OF CONTENTS

(Cle" Page

4.7 Interface with Knowledge-based System 45

4.7.1 Desirability 45
- 4.7.2 Capability 45

L 4.8 Resource Requirements 46

4.8.1 Requirement Elements 46
4.8.2 Requirements 47

I 4.9 Additional Observation 49

5.0 SUMMARY AND RECOMMENDATIONS 51

5.1 Summary 51
5.2 Potential Applications 52
5.3 Recommendations 54

GLOSSARY 55

REFERENCES 57

DISTRIBUTION LIST 59

-vii-



Iar OF ILLUSTRATIONS

FIGURE PAGE

1-1 Old and New Model Concepts 3
3-1 Movement Network for the BEM 23
3-2 Object Hierarchy in the BEM 25
3-3 Red Unit Positions in the BEM 26
3-4 Blue Sensor Coverage in the BEM 27
3-5 Sectors in the BEM 29
3-6 Physical Layout of the SPL 35
3-7 Configuration of the SPL 36
3-8 CAMIS Laboratory Configuration 38

* Ii

I -viii-

-



1.0 INTRODUCTION

1.1 Purpose and Scope

As one of four tasks in support of the Army Model Improvement

Program (AMIP) Management Office (AMMO) for fiscal year 1983, the MITRE

Corporation conducted a preliminary evaluation of the use of object-oriented

programming in the AMIP hierarchy of models. In conjunction with this task,

MITRE drew upon and enhanced a previous simulation facility to demonstrate

and test the application of this programming technique. This paper provides a

description of object-oriented languages in general, discusses the simulation

constructed with a selected object-oriented language and then presents

findings, observations and recommendations regarding the utility of such

languages and techniques in the AMIP hierarchy.

1.2 Methodology

The methodology for evaluating object-oriented programming was to

take an existing model, the MITRE Threat Event Generator, which was1previously written in Pascal, and implement it in an object-oriented

language. The new model serves as a demonstration facility as well as the

basis for the evaluation.

The MITRE Threat Event Generator (MTEG) was a computer simulation

model designed to generate the tactical movement, communications and other

sensor observables of a Soviet division-sized force at company resolution.1'2

The list of resulting events provides the basis for the creation of sensor

reports which are processed by the ANALYST, an expert system for

processing sensor returns to determine enemy activity and critical nodes.3

- i -1-
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The MTEG was written in Pascal and required enhancement of the threat

representation and sensor capabilities in order to provide a more realistic

stream of sensor reports to the ANALYST. The combination of the enhanced

threat event generator and sensor capabilities became the Battlefield

Environment Model (BEM). 4 Figure 1-1 depicts the relationship of the old and

new model concepts. The ANALYST, previously written in Pascal, was

concurrently rewritten in LISP and operates on a LISP machine. 3

The language chosen to implement the BEM was the Rule-Oriented

Simulation System (ROSS), an object-oriented programming language

consisting of a set of LISP macro-instructions and developed at the Rand

Corporation specifically for constructing military simulations. 5 The author is

not aware of another language or system developed specifically for object-

oriented simulations of combat.

Evaluation of the utility of object-oriented programming was thus made

by implementing the BEM in ROSS, using the computer facilities of the

MITRE Washington Secure Processing Laboratory (SPL). The equipment which

supports the BEM includes a VAX 11/780, with two disc drives, a tape drive

and a printer, as well as three text and two graphics terminals. Software

includes the VMS operating system, EUNICE (a software package to emulate

the UNIX operating system), FRANZLISP (the Lisp dialect used to run ROSS)

and the ROSS files containing the simulation facilities provided by RAND.

The SPL is discussed in more detail in Section 3.4.

-2-
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1.3 A Brief Description of Object-Oriented Programming

Object-oriented programming is a technique which attempts to

overcome the limitations of standard procedural programming. Specifically,

as applied to simulation modeling, it attempts to increase the credibility,

understandability and traceability of the processes being simulated. In an

area in which past models have been weak - that of command and control -

object-oriented programming holds forth the promise of lending insight into

the C2 processes being modeled. These touted advantages of the technique

are the elements examined in our evaluation. The performance criteria for

the evaluation are described in the next paragraph.

1.4 Evaluation Criteria

Criteria for evaluating the utility of object-oriented programming in

Army combat simulations were chosen to provide a basis for decisions on

future programming and modeling. The evaluation was conducted with an

appreciation of current model limitations, possible applications and resource

requirements in terms of computers and programmer/analysts. The evaluation

criteria, jointly developed by MITRE and AMMO, and the types of questions

addressed are:

* Processing speed. How much is the processing speed of the model
affected by the number of objects (units, sensors, etc.) treated in
the simulation? What complexity of command relationships and

behaviors can be modeled within acceptable running times?

Processing capabilities. What interface capabilities are there
with other languages and operating systems that might be needed

rto handle complex algorithms or large data bases?

* Graphics interface. What capability does the language have to
support interactive graphics displays?

-4-
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" Ease of model construction, modification and scenario
development. How easy or difficult is it to create the necessary
objects with their properties and behaviors? How difficult is it to
modify units and behaviors to reflect changes in scenario or
tactics?

* Traceability. What facilities are provided to trace cause and
effect of actions and results?

" Visibility into the Command and Control (C2 ) process. What
credibility and understanding of the simulation does the system
provide, especially into the area of command and control?

" Interface with knowledge-based systems. What interface
capability does the system provide with knowledie-based systems

such as might be required for higher level C or intelligence
processing?

" Resources. What are the resource requirements in terms of time,
equipment, facilities and personnel, training and set-up?

1.5 Synopsis of Findings

The following synopsis of findings is presented, addressing the specific

criteria as discussed above. A more detailed discussion is given in Section 4.

e Speed. The processing speed of the simulation is affected by both
the number of objects and the number and complexity of the
object behaviors. While no formula can be easily constructed, it
was found that the system could handle 144 Red Units, 8 Blue
sensors and 530 auxiliary objects with a simulated-to-CPU time
ratio of 2:1, including that required for graphical displays.

* Processing capabilities. The version of ROSS which was used was
written in Franzlisp, a LISP dialect which provides convenient
interface with other languages. EUNICE, a UNIX software
package, was utilized to emulate the UNIX operating system on
VMS, the operating system for the VAX 11/780. The capabilities
provided by this combination allowed access to the facilities of
both operating systems and contributed to ease of development.

9 Graphical interface. No direct graphics interface is provided by
ROSS. While some artificial intelligence (AD languages are
designed for graphical animation such as dancing figures or
turtle-graphics, in ROSS, the interface to graphics devices have

-5-
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to be built from scratch. However, the object orientation allows
the graphics to be conveniently treated as an object to which
messages are directed and which draws the desired displays.

" Ease of construction and modification. Basic features of most
object-oriented languages, such as object hierarchies and the
inheritances of properties and behaviors, aid greatly in the initial
model construction as well as in modification. The modularity
created by keeping object properties and behaviors together also
assists in keeping track of and modifying the simulation.

" Traceability. ROSS offers a number of features which are highly
desirable in tracing cause and effect. The message passing
characteristic of object-oriented programming facilitates
implementing this capability.

" Visibility into the C2 process. Many features, of ROSS
specifically and object-oriented programming generally, aid in
the intelligibility and understanding of the causes and effects,
particularly in the case of command and control. Because of the
emphasis on message passing, the dependence of activity on
message receipt and reliance of command and control on
communication, actions are easily tied to behavioral rules which
are initiated by messages received.

* Interface with knowledge-based systems. Interface between the
BEM and ANALYST was achieved through the VMS operating
system inter-process communications written in C and LISP.
Interface on other systems would be dependent on the capability
of the underlying language and particular operating system to
interface with other languages.

Resources. Although the physical requirements depend somewhat
on the complexity of the simulation, the power and flexibility of
the system demand a price of size. Considerable processing size

* and speed is required to handle all but the simplest of
simulations. Personnel training requirements vary depending on

,- the individual background. Analyst/programmers with a LISP
background can adapt readily to object-oriented programming,d." whereas those who are more accustomed to standard
programming need time to learn and "think" LISP before tackling
ROSS and its use in simulation. Although ROSS itself has
relatively few statements to learn and is easy to get a feel for, a
working knowledge of LISP is considered essential to fully
understand and utilize ROSS or object-oriented programming.

-6-



1.6 Report Overview

This report continues with four sections. Section Two discusses object-

oriented programming in general and presents a description of ROSS. Section

Three describes the BEM and its development. Section Four presents findings

and observations on implementing the BEM in an object-oriented language.

Section Five concludes with a summary and preliminary recommendations as

to the role of object-oriented languages in the AMIP program.

-7
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2.0 OBDJCT-ORMNTBD PROGRAMMING

2.1 Concepts

Several features of object-oriented simulation programming distinguish

it from standard procedural language programming. Centermost to object-

oriented programming is the passing of messages between objects. All

activity is controlled by messages and the resultant behavior brought about by

the objects in response to the messages.

Objects may represent components of the system being investigated, for

example, the individual military units of a force. Knowledge regarding each

object, that is, its attributes and behaviors, is stored with the object rather

than in separate data arrays and procedural subroutines. The resultant

modularization makes it easy to trace cause and effect and to make

modifications. The behaviors of objects are IF-THEN rules which describe the

actions to be taken by an object if a particular message pattern is received.

Another feature of object-oriented programming languages is the object

hierarchy and the ability of objects to inherit attributes and properties from

their parents in the hierarchy. The hierarchy assists in the construction of the

simulation as well as in sending messages. Whenever an object receives a

message whose pattern is not stored directly with the object, a search is made

of parents in the hierarchy to find the indicated behavior. Properties, such as

speed, location, etc., are similarly treated. This feature cuts down on the

amount of storage required and shortens the time needed to construct the

simulation. In compiled code, accessing inherited behaviors and properties

does not Involve significant losses in processing speed, however interpreted

code can slow down during these operations.

-8-
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Object-oriented languages are written in, or built upon, LISP or LISP-

like languages. LISP is the basic language (in this country) for artificial

intelligence. It provides for symbolic manipulation and list processing, and is

more amenable to dealing with decision-making procedures and rule-based

behavior. A desirable feature attained with the use of LISP is the ability to

operate in the interpreted mode for the development and testing of the

simulation.

2.2 ROSS

2.2.1 Backfround

ROSS was developed by the Rand Corporation to conduct military

simulations taking advantage of advanees in artificial intelligence and

computer development. ROSS is based upon LISP and has been written in the

USP dialects Maclisp, Franzlisp and Interlisp. It consists of a set of LISP

macros and allows ROSS and LISP functions to be interspersed in the

programming.

ROSS was applied in a simulation of air combat* and was successful in

providing a testbed for investigating various tactics and employment

techniques. This evaluation looked at its applicability to ground combat

simulation.

2.2.2 Deseription of ROSS Basic Features

The basic features of ROSS are the actors, with their properties and
behaviors, and the messages which invoke the behaviors by the actors. Actors

are created and caused to Interact through ROSS commands.

Simulating Warfare in the ROSS Language (SWIRL)7

-9
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2.2.2.1 ROSS Commands. ROSS commands are of the form

( eask or tell .objet;%message, ).

The parentheses are a LISP characteristic and set off a list, or function.

"Ask" and "tell" are equivalent in ROSS and form a LISP macro alerting an

object to receive a message. "Object" is any actor in the simulation, and

"message" is the message sent to that actor.

2.2.2.2 Actors. Actor is a term used interchangeably with object

but which connotes some degree of animation and autonomy. There are two

types of actors, basic and auxiliary.

Basic actors are used to represent components of the system being

simulated or under study. These are the basic objects of the simulation. To

facilitate construction and control of the simulation, there are two types of

basic objects: generic objects, representing classes of objects, and instances

of the class, called instance objects or instance actors. Instance actors are

the physical components or units being represented, for example "tank

company #1", whereas a generic actor might be "tank company".

The other type of object is the auxiliary object. An example of an

* auxiliary object in the BEM is the Mathematician which is used to perform

most of the calculations and thereby allows the code associated with the basic

objects to be less cluttered. Other auxiliary objects are used to assist in the

creation and control of the simulation.

Actors may have properties which represent, for instance, fuel levels,

* .number of vehicles, plans, etc., the data associated with a particular object.

Properties may be inherited. Actors may also have behaviors. These

-10-



behaviors are written in the form of IF-THEN rules. They list actions to be

taken by the actor upon receipt of a message pattern. The message acts as a

stimulus and the resultant actions are the actor's response. The response

generally includes sending messages to other actors. Actions taken by actors

can thus be directly linked to the messages they receive.

2.2.2.3 Object Hierarchy. The parent-offspring relationship implied

by the generic-actor (class of objects) and the instance-actor (object instance)

is organized into an object hierarchy. Succeeding levels imply super classes,

or classes of classes. This linking of objects allows inheritance by an actor of

properties and behaviors of generic actors representing the class or classes of

objects to which it belongs. The hierarchy does not need to be a strict tree

but may be a complex hierarchy allowing an object to have multiple parents,

indicating that it might be a member of more than one class. This complex

hierarchy permits the inheritance of properties and behaviors from more than

one parent. (Care must be taken to prevent conflicting inheritances.) The

hierarchy assists in the creation of the simulation by allowing common

* features to be entered and stored at the highest level. During the simulation,

information on an actor may be queried or used in the simulation by doing an

inheritance search (i.e., going up through the hierarchy) if the data is not

stored at the actor level In the SWIRL simulation, an example of multiple-

inheritances is given of an AWACS aircraft which inherits properties and

behaviors from two parents - the generic actors Moving-Object and Radar.

Properties and behaviors associated with movement for the AWACS are

-11-



inherited from the actor Moving-Object, whereas properties and behaviors for

the AWACS associated with radar detection and capabilities are inherited

from the actor Radar.

2.2.2.4 Predefined Actors and Primitive Behaviors. Four auxiliary

actors exist in the ROSS environment to assist in the creation and operation

of the simulation or to handle errors and diagnostics.

Something is the top-most actor in the object hierarchy. Al of the

primitive ROSS behaviors are stored in Something. One of these behaviors

allows the user to use Something to create al of the other actors in the

simulation. In the BEM hierarchy, to be discussed in the next section, part of

the hierarchy might be represented as follows:

SOMETHING

I
UNIT SENSOR

I1 f CONTROL ACTION

:/ I - UNIT - UNIT

The highest level ROSS actor Something created Simulator when tasked with

this code

(ask something create generic simulator)

-12-
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In two separate messages Simulator was then asked to create generic actors

Unit and Sensor. The actual code is:

(ask simulator create generic actor unit with ... <the properties
Unit has)).

In turn Unit was asked to create generic actors Control-Unit and Action-

Unit. These steps were possible as each actor inherits the primitive "create"

behavior from the top-level, Something.

Nelock is another special actor which represents the simulation clock

and controls the time stepping of the simulation.

ROSS-error is a special actor which provides error-handling in the

simulation. The other auxiliary actor is Property which prompts the user for

property values during actor creation.

2.2.3 Actor Creation and Manipulation

Actors with their properties and behaviors are created before the

simulation, utilizing the predefined ROSS actors, their primitive behaviors and

the object hierarchy. During the simulation the properties, behaviors,

memory (facts known), and plans (things to do) of each object can be

manipulated. (Actors could also be created or removed during the simulation,

either dynamically or interactively). There are 14 behaviors in the actor

Something to create actors, one behavior to kill actors (remove them from the

simulation), and four behaviors to manipulate actor behaviors.

2.2.3.1 Creation of Generic Objects. The ROSS command to create

generic objects is of the form:

(ask something -cor a descendant In the hierarchy>
create generic eageneric-object-name, with <properties>).

-13-
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For example, if Unit had already been created, it could be asked to create

Control-Unit:

(ask unit create generic control-unit).

In this case no additional properties are assigned to Control-Unit. ROSS

automatically assigns the following properties: type, parents, and

descendants, with the appropriate values.

2.2.3.2 Creation of Instance Objects.The ROSS command to create

instance objects is of the form

(ask -.generic-objectp create instance .dobject >, with <properties7).

If a generic tank company, Tank-Co, had been created, it could be asked to

create an instance Tank-Co-i as follows:

(ask tank-co create instance tank-co-1 with position (10.5 20.3) fuel
50 cetc, ).

In this case Tank-Co-1 is assigned all the attribute values pertaining to its

individual status. It would also inherit values such as the number of vehicles

from the generic Tank-Co. These values, while initially common to all tank

, companies, could be varied for each instance during the simulation.

A number of ROSS commands exist to expand the basic creation

capability. These commands allow the user to create objects by analogy,

recreate the objects or remove them from the simulation.

2.2.3.3 Actor Behaviors. Actor behaviors are defined as a set of

actions to be taken on the receipt of a message or class of messages. This

relationship is set up by a ROSS command of the following form:

(ask .:object7 when receiving cmessage-template' ,cactionsP,).

-14-
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This behavior definition is in the form of an IF-THEN rule. The LISP macros

translate this to: "if the object gets a message matching the message

template, it is to take the indicated actions." The use of message templates

is made possible through pattern matching and variable symbols. This feature

greatly extends the power of message passing and reduces the number of

behaviors which have to be defined. Variable symbols in ROSS are prefixed

with the character "7" for single variables (LISP atoms) and with "+" for

multiple variables (LISP lists).

An example behavior, such as might be in the BEM model, which shows

the use of pattern matching, is as follows:

(ask sensor when receiving
(v, unit is in your coverage area)
(tv you add !unit to your list of targets-in-range)).

In this case a sensor instance will, upon receipt of a message that a particular

unit is in range, add that unit to its list of targets in range. The tilde symbol

"-v" indicates an abbreviation and will be further explained in the discussion on

abbreviations below. The "I" indicates that the value of the following variable

should be used, not the variable itself. The "W" is an evaluation macro which is

necessary because ROSS, unlike most LISPs, is a non-evaluating dialect.

Other ROSS commands exist to

* recall actor behaviors, that is, print the behavior to the terminal,
to assist the user in debugging or understanding actions in the
simulation, and

* forget or kill actor behaviors, so that the actor will no longer
follow the actions indicated in the behavior.

-15-
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2.2.3.4 Actor Memories and Plans. Actors may also have plans and

lists of known information. These, unlike properties and behaviors, cannot be

inherited. They can be modified dynamically or interactively during the

simulation and can be queried by the user. Plans can be made and unmade. It

is this planning feature which works together with the simulation clock in

ROSS to provide a pseudo-time stepping of the simulation.

The message to the actor which causes planning to take place is of the

form:

(ask <:actor>

plan after cn, seconds Cactioni.)

For example a message sent to a unit might be

(ask tank-co-1 plan after 10 seconds send confirmation call)

where "send confirmation call" is another message which would be sent to the

unit (!myself) after the 10 seconds to invoke another behavior.

2.2.4 Conduct of the Simulation

The elements of the simulation are the initiation, control of the

simulation itself, manipulation of the actors and behaviors, and the reporting,

*tracing and debugging facilities.

2.2.4.1 Initiation. All activity is controlled by messages, so that any

actors that are to be active in the simulation must receive at least one

lmessage at the beginning or during the simulation. In the case of military

units these messages might simulate actual orders communicated.

-16-
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2.2.4.2 Control. Control of the simulation is maintained by the

simulation clock. The clock maintains a time-ordered list of events in the

form of event time and event actor. Upon completion of the current event,

the clock is advanced to the time of the next event and then a message is sent

to the appropriate actor. Once alerted, the actor looks to its list of things-to-

do; the message stored there invokes a behavior and the actor takes the

actions indicated.

The simulation is therefore event-oriented and pseudo-time-stepped.

2.2.4.3 Actor Manipulation. Actors properties and behaviors may be

dynamically altered in the simulation or, by interrupting the simulation, the

user may enter changes and then continue the simulation. Care must be taken

in the latter case because of the effects on events which have been scheduled

but not executed prior to the time of the interrupt.

2.2.4.4 Tracing. Behaviors with the actor Something provides a

facility for tracing actor behaviors. The user asks the actor to trace a

particular set of behaviors. Tracing can be done either with or without

inheritance and is invoked with ROSS commands of the form:

(ask cactor, trace your behavior matching -message-pattern,.)

For example, it might be desirable to trace movement messages being sent to

actor Tank-Co-I. This could be done with the following command:

(ask tank-co-i trace your behavior matching (+ move +)).

-17-



This would result in a trace of all messages sent to tank-co-1 with the word

"move" in them. The tracing option is undone by sending a similar type

message to the actor of the form:

(ask -actorv untrace your behavior matching 4message-pattern,.)

2.2.4.5 Reporting. The user can select the messages to be reported

on the screen as the messages are passed, or kept in a file to be printed out

for analysis. The recorder functions are behaviors of the actor Something.

The three behaviors are:

" to record message transmissions to an actor into a designated file

when the message matches a designated pattern

" to unrecord (stop recording) messages as indicated above

* to record every message transmission to an actor into a file

For example, if it is desired to record all messages to Tank-Co-1 in a

file tank-msg-file, the following command could be sent:

(ask tank-co-1

record every message transmission into tank-msg-file.)

2.2.4.6 Graphics. Because graphics are typically hardware

dependent, there is no specific package provided by ROSS for displaying

graphics. ROSS documentation however does indicate the need for graphics in

r !visualizing what is happening in the simulation.

The BEM uses an actor called "Artist" to whom all messages are sent

concerning graphics. This use of an auxiliary object to handle graphics allows

the code having to do with graphics to be centralized and to free the actor

behaviors of code which is neither ROSS nor LISP.

-18-
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2.2.5 Other Facilities

Editing of actors, properties and behaviors can be done using any line or

screen editor before the simulation is begun. It is much more powerful and

effective, however, if the user can suspend the ROSS environment, make the

necessary editing, either temporarily or permanently changing the file with

the actor behaviors, and then reenter the ROSS environment. This is possible,

for instance, in EMACS running under VMS or UNIX, with the right

combination of editors and operating systems.

In the SPL, ROSS is used in conjunction with the EMACS editor; this

provides a flexible system which allows the ROSS process to be interrupted,

on-line editing to be done, and the process resumed. This can be done using

the windows and buffers of EMACS which allow viewing of both processing

and editing at the same time.

ROSS is quite readable as it is written. The abbreviation and message-

passing conventions tend to be self documenting and thereby assist the user or

others in understanding and modifying the code. ROSS provides an

abbreviations package which makes the code even more readable.

Abbreviations are prefixed with the tilde character, "W',. An example is

"your", the abbreviation for "ask myself recall your".

In the example given earlier

(ask sensor when receiving ( 7unit is in your coverage area)

(,you add !unit to your list of targets-in-range))

the "V you" is an abbreviation of "ask !myself" where "myself" is a variable

indicating the current actor.
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2.3 Other Object-Oriented Languages

There are a limited number of language systems which have been applied

to object oriented programming in the past. Some of these are no longer used

or are used now in only limited applications. Several additional language

systems have been developed recently or are being developed at this time.

The list provided is not all-inclusive especially for some of the more recently

developed languages.

2.3.1 SIMULA

SIMULA is an early object-oriented language which introduced

communications between objects and incorporated an object hierarchy but no

inheritance of properties or behaviors. It is ALGOL-based. 8

2.3.2 ACTORS

ACTORS is an early object-oriented language which explored

parallelism. It was developed by Carl Hewitt at MIT. It is sometimes

referred to as being in the ACT class of object-oriented languages. 9

2.3.3 SMALLTALK

SMALLTALK is a language designed to assist users in communicating

and interacting with personal computers. It was developed in 1972 by Alan

Kay at the Xerox Palo Alto Research Center (PARC). It utilizes message

passing between objects and incorporates inheritance of behaviors and

properties through an object hierarchy. 1 0
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2.3.4 DIRECTOR

DIRECTOR Is an object-oriented language especially designed for

graphics animation and artificial intelligence applications. It was designed

and implemented by Kenneth Kahn at MIT. 11

2.3.5 LOGO

LOGO is a LISP-based micro-computer language used to introduce

programming and develop problem-solving skills. It was developed at the MIT

Laboratory for Computer Science and is best known for its application to

turtle graphics. LOGO employs message passing generally from the user to

objects such as the "turtle" on the graphics terminal. 1 2

2.3.6 FLAVORS

FLAVORS incorporates message passing and lattice inheritance whereby

objects can inherit properties and behaviors other than from parents.

FLAVORS underlies the powerful window editors/processors of the new LISP

machines.

jFLAVORS was developed at the Artificial Intelligence Laboratory at

Massachusetts Institute of Technology. It is a language feature of ZETALISP,

the LISP dialect used on the LISP Machine. 13

2.3.7 LOOPS

LOOPS is a recent object-oriented language which incorporates a rule-

based inheritance scheme. It uses four programming paradigms:

e procedure-orientation, the INTERLISP-D base of LOOPS
9 object-orientation for the organization of data
# acess-orientation for monitoring programs by other programs
* rule-orientation for representing decision-making knowledge

LOOPS was developed at XEROX PARC and is based on INTERLISP-D.

It borrows from FLAVORS the multiple-inheritance lattice. 14
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3.0 DESCRPTION OF THE BATTLEFIELD ENVIRONMENT MODEL

(BEM)

3.1 Model Overview

The BEM consists of the necessary data bases, preprocessors which

convert the data into actor files, and the additional actor files constituting

the threat and sensors. The purpose of the BEM is to produce a realistic flow

of sensor reports to the MITRE ANALYST (a knowledge-based system for

fusing sensor data) while allowing interactive control of the Red units, Blue

sensors, and their behaviors. The BEM also provides a testbed for

investigating the effects of changes in Red behavior and Blue sensor

employment. The BEM was implemented in ROSS to provide a basis for the

evaluation of the utility of object-oriented programming in ground combat

simulations. For a more detail description of the BEM, see the MITRE

Technical Report. 4

3.2 Scenario

The simulation builds upon data taken from the Scenario Oriented

V Recurring Evaluation System (SCORES) 1 5 for a division-sized threat force.

Battalion positions, both at the beginning and end of a selected six-hour time

slice were expanded to company level by analysis of the terrain and Soviet

unit deployment. 16, 17, 18 Unit movement takes place over a nodal network

which includes the road network and trafficable paths for company-sized

units. Figure 3-1 depicts the transportation network for the BEM.

3.3 Actor-Objects in the Simulation

Red company-sized units and headquarters up to division level make up

the threat side of the objects in the simulation. The friendly side consists of
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Blue intelligence, surveillance and target acquisition sensors and their

controlling units. Figure 3-2 depicts the object hierarchy for the creation of

these basic objects and the auxiliary objects used to control the simulation.

Selected actors will be described below in order to give an understanding for

the construction and operation of the simulation. A graphical display of the

troop positions is given in Figure 3-3. Figure 3-4 displays representative Blue

p isensors in position and their coverage.

3.3.1 The Simulator

The Simulator is the top-level simulation object used to initiate the

creation of all other objects and to control the simulation. The Simulator is

created from the ROSS object Something in the BEM, the Simulator is in turn

asked to create the Unit and Sensor objects and each of the auxiliary objects

whereas other objects are created from their parents.

The properties of the Simulator are default values for the graphics

terminals and parameters for initiation, timing and termination of the

simulation.

There are four behaviors for the Simulator in addition to those inherent

in ROSS. These essentially set-up the scenario data, prepare the graphics

display (including drawing the transportation network, terrain and unit

positions) and then start and control the speed of the simulation.
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3.3.2 The Sector

Sector is a special auxiliary object designed to localize detections by

some of the sensors. It also improves the integrity of the simulation by acting

as a third party in accessing data. The need to localize detections is caused

by

* the event-orientation of the simulation versus the continuity of
some activity such as movement and,

* the problem of identifying which sensors, if any, have coverage of
an area in which a unit is moving.

Once the match-up of target and possible detecting sensors is made, more

detailed calculations can be made as to probabilities of detection and then the

appropriate data can be processed through the Sector rather than have the

sensor have access to more target data than necessary. Figure 3-5 depicts the

individual sectors, which inherit their behaviors from Sector but have their

individual property values.

The properties of the individual sectors are

* position, in terms of four x-y locations of a rectangle

* units-list, a list of all units moving in the sector at the time,
dynamically changed as units move in and out of the sector, and

* sensors-list, a list of all sensors having coverage in some portion
of the sector at the time and requiring target-sensor matching
and data access through the sector. (See the discussion of sensors

,* for explanation of which sensors require this matching).

* There are several behaviors stored at the Sector and accessible by

*the individual sectors for the determination of unit enterings or departing and

of sensor coverge. An example behavior is that when a sector receives a

message that a unit has entered the sector, (this is sent by the unit based on
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its movement plan) the sector adds the unit to its unit-list and plans ahead to

remove it from the unit-list based on the units calculated departure time. It

then sends a message to the Mathematician to determine if there are any time

and location overlaps between the unit and any MTI sensor currently having

coverage in the sector.

3.3.3 The Artist

The Artist is an auxiliary actor whose purpose is to control all interface

between the simulation and the graphical display terminals. The Artist has

been written to be relatively independent of the particular graphical devices

available by calling low-level LISP functions to drive the graphics terminals.

Because the behavior of the Artist does not assist in the understanding of the

military simulation, the functions the Artist performs are written in LISP.

The properties of the Artist include the parameters to set up the real-

world coordinates of the simulation.

There are currently 17 behaviors for the Artist which include drawing

the transportation network, terrain representation, and unit symbols at their

initial locations, indicating movement, communications and artillery firings.

An interactive capability was constructed for "picking" an actor using a

graphics cursor and displaying its designation and properties. The user canVinteractively use the Artist by interrupting the simulation and querying units,

sensors, sectors and network nodes as to their status and activity. The Artist

maps the real-world simulation coordinate system selected (stored as

Simulator properties) to the coordinate system utilized by the graphics

terminals.
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3.3.4 The Pathfinder

The Pathfinder is an auxiliary actor that is used both in the

preprocessing stage and dynamically during the simulation to determine routes

over the transportation network for units and sensors. The Pathfinder

accesses unit and network data and determines feasible routes with path-

finding algorithms written in LISP.

The Pathfinder does not have any properties but has three behaviors:

* to determine a unit nodal route by time

o to determine a ground sensor nodal route by time

* to move either a sensor or unit over the nodal path at the
determined times

3.3.5 The Mathematician

The Mathematician is the work horse of the auxiliary objects and

performs most of the simulation calculations. The unit behaviors are thus

freed of unnecessary and repetitious calculations which do not help in the

4 understanding of the simulation. Many of the functions are written in LISP.

The Mathematician does not have any properties.

The types of behavior for the Mathematician are indicated above.

There are nine behaviors for the Mathematician:

* to calculate object update points in between events

* to determine time and space overlaps between an entering unit
and any MTI sensors currently covering a sector

* to reconstruct cycle definition for a sensor

9 to determine time and space overlaps between a unit and any
COMINT sensor currently covering a sector
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* to determine sector penetration of an airborne sensor, i.e., when

a sensor starts coverage in any part of a sector

* to determine sector penetration for a unit

* to determine sector penetration of a ground sensor

9 to determine coverage by an airborne sensor

3.3.6 The Interface

The Interface is an auxiliary object which provides the interface

between the main simulation module of the BEM, the ANALYST and the Blue

Sensor Control Station (BSCS) (see section 3.4.1). Sensor reports are

temporarily stored by the Interface, are accessed by the ANALYST or BSCS

during the simulation run, and are then erased by the using facility.

3.3.7 The Control-Unit

The Control-Unit is a generic actor which assists in the creation of the

subordinate generic control units and stores common control unit behaviors.

The properties of the Control-Unit include the parent (Unit) and the list

of subordinate control-units, (e.g., a generic tank battalion headquarters)

automatically assigned in ROSS.

The single behavior currently stored at the Control-Unit is that giving

the actions to be taken upon receipt of the message "implement battle plan".

•s The resultant actions are for the Control-Unit to

* send messages to the Artist to display an acknowledgement

communication

* send messages to subordinates to implement the battle plan

e send a message to the sector in which the unit is located that a
communication has occurred

* cause the unit Itself to be moved if required
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3.3.8 The Action-Unit

The Action-Unit is a generic object created to assist in the simulation

construction and to store the common action-unit behaviors. The properties

of the Action-Unit include the parent (the Unit) and the list of generic

subordinates (e.g., a generic tank company), again both handled by ROSS

automatically.

The principal behavior of the Action-Unit is that which occurs when it

receives the message "implement battle plan". The resultant steps are the

same as those for the Control-Unit, except that the Action-Unit does not have

subordinate units to notify.

3.3.9 The Sensor-Control-Unit

The Sensor-Control-Unit assists in the creation of subordinate ground or

airborne sensor control units and contains the common properties and

behaviors for these units.

The Sensor-Control-Unit has three designated property slots: target

priorities, graphics shapa and ground-sensor-cycle. The graphics shape is

common to all and is specified at this level.

There are two behaviors for the Sensor-Control-Unit:

* to send a ground-type sensor to a designated point with a
specified mission

* to send an airborne-type sensor on a specified search pattern in a
particular area

3.3.10 The Sensor-Action-Unit

The Sensor-Action-Unit assists in the creation of the subordinate

generic airborne or ground sensor action units which in turn create the generic
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units representing the types of sensors in the simulation (currently moving

target indicators (MTI), communication intelligence (COMINT) sensors,

electronic intelligence (ELINT) sensors, counter-mortar/counter-battery

(CM/CB) radars, and image intelligence (IMINT) sensors). The Sensor-Action-

Unit also contains the behaviors common to all sensor action units.

The properties of the Sensor-Action-Unit include the parent (the

Sensor), the list of subordinate generic actors, and parameter slots for the

sensor and platform capabilities to be filled in at either the generic or

instance level, such as the mission definition (flight path, duration, duty-cycle

etc.), current status, range, and radio frequency.

The three behaviors for the Sensor-Action-Unit are:

* to move ground sensor to a designated point with a specified task

* to move an airborne sensor in a racetrack pattern with a
specified task and plan

* to fly to a designated point

3.4 Demonstration Capability

The demonstration facility for this project is located in the MITRE

Washington Secure Processing Laboratory (SPL). Figure 3-6 depicts the

physical layout of the SPL. Figure 3-7 shows the hardwire and software

configuration for preprocessing and operation of the BEM, and interface with

the Blue Sensor Control Station and the ANALYST.

3.4.1 BEM Work Stations

Preprocessing of data files can be done on any available text terminal

using a graphics terminal if desired to visually check unit locations and

movement plans.

-34-



II

f2

1- S

44-5

11

Iij



Sc

~0

gus.

U) &

0 -.) 04

..

04-

A

Waf
j~ .A~ (A~ C

z 00

-36-



Conduct of the simulation requires the operation of the Controller

Station consisting of a text terminal and a graphics terminal, and the Blue

Sensor Control Station consisting of a graphics terminal.

At the Controller Station the simulation is initiated and changes can be

interactively entered from the terminal; the positions and activities of the

units and sensors are exhibited on the graphics display. The Blue Sensor

Control Station is used to display sensor data and sensor reports as well as to

interactively task sensors on a mission basis.

The program development, preprocessing of data, and simulation

operation are conducted on terminals operating from a VAX 11/780 with one

67 megabyte disk drive, one 300 megabyte disk drive, and 8 megabytes of

memory.

The SPL is located entirely within a shielded vault which is being

cleared as a special compartmented information facility (SCIF).

3.4.2 Briefing Facility

Located within close vicinity of the SPL is the MITRE Command and

1Management Information System (CAMIS) Laboratory which contains a

similarly configured VAX 11/780. The CAMIS Laboratory also includes a VIP

briefing/conference room with projection facilities for showing large screen

displays from the graphics terminals. Demonstrations of the BEM are

provided in the CAMIS Laboratory by physically transporting the programs and

data via computer tapes.

Figure 3-8 presents the computer configuration for the CAMIS

Laboratory.
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4.0 FINDINGS AND OBSERVATIONS

Our findings follow the list of evaluation criteria given in Section 1.3.

Additionally, observations are presented either with the finding where they

are related or following the findings. The presentation of each finding is

preceded by a short discussion on rationale or desired levels of capability

where these are felt to be applicable.

4.1 Processing Speed

4.1.1 Desirability

To be useful to the Army at one of the three levels in the AMIP Model

hierarchy, a language should be able to create a simulation capable of

matching the appropriate combinations of scale, battle length and running

time. At the corps/division level the simulation should be able to handle three

to five days of battle time with units at company or battalion resolution and

approximately a ratio of 20 or 30:1 simulated-to-CPU time. The complexity

of the simulated command and control processes should be sufficient to allow

the simulation to run uninterrupted for the length of battle. 12' 13

4.1.2 Capability

The BEM Simulation includes 144 Red units, 8 Blue sensor units, and

approximately 530 auxiliary objects. The number of auxiliary units could be

reduced considerably by storing the network data in arrays rather than having

490 objects representing the nodes. However, the nodes do not have any

behavior and so their effect on processing time should be minimal. With these

conditions, the BEM Is able to attain a simulated-to-CPU time of

approximately two-to-one when graphics are run and four-to-one without

graphics.
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The ROSS documentation discusses the speed problem and indicates that

distributed processing may be one way to overcome this deficiency, however

preliminary results with simulated parallelism shows the improvement to be

less than expected. 21 With any object-oriented programming, the price paid

for the power and flexibility is memory size and processing speed. New

hardware, that is, machines designed for symbolic processing, may hold

promise to overcome these problems.

4.2 Processing Capabilities

4.2.1 Desirability

It would be desirable to be able to interface the object-oriented

language with other languages or programs for a number of possible reasons.

One application might be in using the object-oriented language to handle a

command and control module as part of a large scale simulation written

mainly in procedural languages. Or the simulation could be mainly object

oriented while relying on a few modules written in procedural languages to

handle complex algorithms or to manipulate large data bases. Another

application might be in accessing higher resolution models written in

procedural languages.

There is another aspect of processing capabilities which has to do with

the capability to interrupt the simulation, suspend operations while editing or

querying is done, and continue the simulation at the point interrupted or at

any earlier point in the simulation. The capability to interrupt, suspend

operations and continue at the point of interrupt is needed to develop the

simulation and make modifications. The capability to restart the simulation
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at another point would give the user/analyst real power in looking at the

effects of changes in tactics and decision making as indicated in the actor

behaviors.

4.2.2 Capabilities

The ability to interface with another language is a function of not ROSS

but of the LISP version in which ROSS is written. The version of ROSS used

was written in Franzlisp. This was run on the VAX by using the EUNICE

emulation package wherein the UNIX shell (necessary for running Franzlisp) is

run as a VMS (the VAX operating system) job. Franzlisp provides the facility

of operating with other languages and the ability to utilize FORTRAN, Pascal,

or C functions or subroutines.

Use of the UNIX shell and the EMACs editor provided the capability to

interrupt the simulation, perform editing and/or querying, and continue the

simulation. The EMACs editor also provided the capability to edit ROSS or

LISP in one window of the terminal screen and to see the evaluation done in

another window.

4.3 Graphical Interface

4.3.1 Desirability

Dynamic graphics are required in a simulation to assist the user

throughout the preparation, conduct and analysis of the simulation. During

the preparation of the simulation, graphical representation is an aid in the

development and verification of data bases for input such as terrain and unit

positions. During the simulation, a dynamic representation of the battle

events allows the user to follow the conduct so that the simulation may be
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stopped and corrected if a logical sequence is not being followed. After the

simulation has been run, a playback capability assists the user in tracing cause

and effect and analyzing the overall simulation.

4.3.2 Capability

The capability to support interactive graphics is not a function of the

simulation language itself but of its capability to link to the operating system,

the graphical equipment and the links between the CPU and the graphics

terminal. ROSS does not provide any direct capability to support graphics.

Object-oriented programming does, however, lend itself to treating the

interface with the graphical equipment as an auxiliary actor. Messages are

sent to the Artist (or other appropriately named actor) to initiate the

graphical terminal, erase the screen, draw terrain background, draw unit

positions, etc.

The SWIRL simulation provides an interface with the graphical

equipment at Rand. Because of the difficulties mentioned before, this is not

generally portable. For the BEM, we used the actor Artist to interface with

the graphics terminals. Both the control and collection management work

stations were provided with an interactive query capability for assistance in

program development and modification.

4.4 Ease of Proaram Construction and Modification

4.4.1 Desirability

The simulation language needs to provide the user/analyst with adequate

facilities to construct and modify the simulation to model tactics and decision

making. This criterion is related to those of traceability and visibility in that
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those capabilities assist in finding the functions and relationships which need

to be modified.

4.4.2 Capability

Object-oriented programming results in a modularity of data and coding

that makes it easy to locate data and behaviors which require modification.

All of the properties and behaviors associated with an actor are stored with

the actor or a parent. Use of ROSS requires storage of the data and behavior

for each actor in a separate file. This makes it possible to call up the file for

the actor, or the appropriate parent, and perform the required changes. It

also simplifies the steps required to compile the code.

The English-like nature of ROSS code makes it easy to read and

understand the actors behaviors, thereby indicating what editing has to be

done to effect the necessary changes.

The ability to use the interpreted mode in LISP (and ROSS) is a distinct

advantage in the initial development of a simulation. It is also possible to use

,j a combination of interpreted and compiled code during the later development

or modification stage so that the effect of changes can be tested without the

need to recompile.

4.5 Traceability

4.5.1 Desirability

In order to validate the model and track down errors in logic or coding,

it is necessary to have a means of tracing cause and effect of various actions

in the simulation. To do this, it may be necessary to trace a sequence of

i messages and behaviors to determine the relationship of the initiating

messages and end result.

-43-



4.5.2 Capability

The message passing aspect of object-oriented programming makes it

easy to trace cause and effect because all actions must be initiated by

messages, and the actor behaviors explicitly state the actions which are

initiated by each message.

ROSS provides a capability for recording or displaying selected messages

for the user to track down selected message types or all of the messages going

to particular actors. This allows the user to determine the causes of events

by seeing the messages which are passed and, by looking at the behaviors,

what actions are taken.

4.6 Intelligibility

4.6.1 Desirability

One of the major problems with previous models has been the lack of

visibility into the command and control processes. Visibility into the C2

process adds to the credibility of the simulation and the analyses to which it

contributes.

4.6.2 Capability

Intelligibility and particularly visibility into the C2 process are inherent

in object-oriented programming because actions can only take place due to

message receipt and the behavioral rules for the actors. This parallels the

heavy reliance of command and control on communications on the

battlefield. The dependence of actions on message receipt allows all action to

*be traced by tracking the messages which are sent and received.
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As stated before, there are several ROSS commands which permit

tasking the actors to trace a particular behavior or all behaviors. Other

commands exist to cancel the trace commands once they are no longer

desired. ROSS also provides the facility to display selected messages on the

screen or place them in a file for later reading. This permits watching

progress of the simulation either in the form of all messages or in selected

messages to help in understanding a portion of the simulation.

We feel that a graphical display of the simulation is invaluable in

following and understanding. It is also useful to be able to interrupt the

simulation and to interactively query actors about their behaviors, status or

activity. While these features are not built into ROSS the inherent data

structure of object-oriented programming made it easy for us to implement

these features.

4.7 Interface with Knowledge-based Systems

4.7.1 Desirability

While object-oriented programming in simulation could be considered a

collection of knowledged-based systems, in the context of this section we are

concerned with interfacing to a knowledge-based system which would conduct

higher-level command and control functions. Such a system is being

considered for handling intelligence processing to assist the decision making

of command and control 1 8

4.7.2 Capability

There is no capability built into ROSS itself to interface with other

languages or systems. Franzlisp does provide facilities to ue foreign
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functions. The ability to interface with another module, running alternately

or concurrently, would depend on the characteristics of the language and the

capability of the operating system.

Interface between the BEM and ANALYST is achieved through inter-

process communications by having ROSS write logical symbols into VMS that

can be accessed by the LISP environment of the ANALYST. The interface in

this case is one-way in that sensor reports are produced by the BEM and read

by the ANALYST, that is, there is no flow from the ANALYST back to the

BEM.

Interface between the BEM and the Sensor Control Station does operate

both ways. The program for the Sensor Control Station is written in ROSS. It

provides the Sensor Control Station operator with a display of the terrain,

sensor locations and coverages, and locations of reported enemy activity. The

operator is provided with a cursor-controlled menu to display sensor data,

display sensor reports and change the updating or purging of reports. The

operator may also use the menu to initiate a sensor tasking in the BEM. The

sensor location and coverage will be indicated at the appropriate time on the

graphical displays at both the BEM Control Station and the Sensor Control

Station. The sensor reports made by the sensor will be indicated at both

stations along with other concurrent events.

4.8 Resource Requirements

4.8.1 Requirement Elements

The requirement elements to be discussed here include those which are

necessary to weigh when considering the use of object-oriented programming
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for combat simulation modeling. While the AMIP master plan 1 2 provides

some general guidelines for these elements, no fixed requirements have been

determined and must necessarily be subject to tradeoffs for desired levels of

breadth, depth and complexity of the simulation.

4.8.2 Requirements

4.8.2.1 Hardware. In order to handle the interpreter, data files and

environment for a moderately complex simulation, the minimum computer

size is either a mainframe computer (DEC 20) or a 32-bit mini-computer (VAX

11/780). Sufficient text and graphical capability should also be provided to

take advantage of the power of object-oriented programming in constructing,

following and modifying the simulation. With the increased power provided in

the new LISP-irocessing machines, it is possible that a division-level

simulation could be run within acceptable time constraints.

It was found necessary to have 1.25 megabytes of dedicated space to run

the BEM with the ROSS environment, interpreter and the size of the BEM

simulation. Smaller space was tested but resulted in a large number of page

faults and an increase in the running time.

4.8.2.2 Software. Software requirements to use an object-oriented

language in a simulation include an appropriate operating system; interpreters

and compilers to run the underlying language; an editor; and any requirements

peculiar to the particular language (or simulation system). In addition, there

are the graphical interfaces to use the graphical equipment in conjunction

with the simulation. It was possible to use ROSS to construct the BEM on the

VAX 11/780 by obtaining a version of ROSS written in Franzlisp. The EUNICE
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emulation package allowed Franzlisp (and ROSS) to be run under the UNIX

shell as a job of VMS (the VAX operating system). RAND provided the

necessary program code to load and compile the ROSS environment. Software

to implement the graphical interface was developed as part of the BEM

construction.

4.8.2.3 Personnel Background and Training. The concept of object

orientation and message passing is an outgrowth of AI technology. Personnel

familiar with Al in general and LISP in particular have little difficulty in

learning and applying ROSS. Knowledge of LISP allows the user to take full

advantage of ROSS and to develop additional functions as necessary.

However, the structure of ROSS makes it quite easy to learn the ROSS

commands in a short time even for someone without a LISP background.

Nonetheless without understanding LISP, it would be difficult to fully

understand ROSS or utilize it to its potential.

4.8.2.4 Set-Up Requirements. The personnel requirements and

length of time to construct the simulation model from the ground up depend
1

on many factors such as personnel background, complexity of the simulation,

and so forth. Two observations can be made, however, on the initial

development of and the changing of one simulation scenario to another.

During development, object-oriented programming allows actors and

behaviors to be incrementally created and tested. This provides very quick

feedback to the user/analyst and increases understanding of the underlying

processes. This understanding can lead to expansion of the model

development and can also contribute to the analysis being performed.
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After the simulation model has been constructed, changes to incorporate

a new scenario can be made in steps to taKe advantage of insights provided. If

the new scenario involves changes in both tactics and terrain, changes to

tactics might first be entered to test if differences in results are due to

tactics alone. Actor behaviors could be reviewed and changed accordingly,

both before and after the test situation.

4.9 Additional Observation

One precaution which must be taken in the use of object-oriented

programming is to guard against the misuse of message passing. It is clear

that when messages simulate communications between basic objects in the

events being simulated, they should be represented in the simulation with

messages passed between the objects. However, when there is simply the

need to access information in an object's property list, there is a pitfall which

can slow the simulation down considerably. ROSS allows the intermixing of

ROSS Commands and LISP so that instead of using a ROSS Command such as

(ask obj ect recall your <property ,)

that information can be accessed with a LISP function of the form

(get -objectp <property7,)

if the property is stored with the object. (A macro or LISP expression slightly

more complex can be written for the job if the property is stored with the

objects ancestors.) This gets away from the message pattern matching which

can slow the simulation if used too extensively.
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The approach we used in implementing BEM in ROSS was to use the

message passing where It either represented actual communicatious between

objects or would not subtract from understanding of the simulation. In cases

such as performing distance calculations or computing time and space

overlaps between units and sensors, we used LISP functions for accessing and

operating on data. This allowed us to speed up the simulation as well as to

streamline the object behaviors.

S

i.
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5.0 SUMMARY AND RECOMMENDATIONS

5.1 Summary Findings

Object-oriented programming provides a number of advantages over

standard programming in all stages of the construction and use of simulations

especially those having to do with combat simulation. The credibility and

understanding provided through application of the techniques and use of

various languages can serve also to support the credibility of the analysis and

studies conducted using such simulation. The English-like code and

interactive capability will encourage higher-level users of the analysis being

supported to become familiar with the simulation and assist them in assessing

the credibility of results provided. The modularity brought about by the

storage of data and behaviors with the actors makes it easier to study and

modify only the necessary portions of the simulation to bring about desired

changes. The dependence of activity upon message passing and actor

behaviors simplifies the task of tracing cause and effect within the

simulation.

*1 The main limitation of object-oriented programming for use in ground

combat simulation appears to be in the running time for a simulation of

adequate battle length. The large number of possible interactions between

aunits on both sides taxes the processing capability of any machine when added

to the overhead incurred with the features that make object-oriented

programming so powerful The pattern-matching feature of message and

behavior handling in particular can produce a heavy processing load when
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there ae hundreds of units on both sides. While the new LISP machines hold

promise to provide better processing capability, it is not known at what

additional cost of resources.

The findings presented in the previous section were based on our

experience with implementing the BEM in ROSS. The findings cannot

necessarily be extended to other object-oriented languages, especially those

developed more recently or currently being developed. As more experience is

gained in development and application, improvements can be made to

overcome shortcomings. It is felt however that, at least with current popular

mainframe and mini-computers such as the DEC-20 and the VAX 11/780, the

ratio of running-to-CPU time will be a limitation to the use of object-oriented

programming for full-scale combat simulation of the level required for the

AMIP hierarchy of models. The near term application using current

computers in the Army analysis community is in testbed configurations

working with two problems that have plagued previous models, those of

4command and control and intelligence fusion.

5.2 Potential Applications

A realizable, practical application offered by object-oriented

programming in the near term lies in its ue in test-bed configuration. This

could either be off-line or as a module tied in with a model of the remainder

of the combat or support actions being studied. Tentative behavior rules

could be studied in the testbed and then selectively tried in the production

model The testbed could also be used to assist in knowledge-engineering the

behavioral rules by providing feedback to the expert on the effects of the rule

-52-

1 --

S



or set of rules. As the behavioral rules can represent the decision-making in a

simulation, this provides a means of testing and modifying the automated

command and control decisions to be implemented in the production model.

Another near-term application to be considered is the use of object-

oriented programming for the higher-level interactions while abstracting the

lower-level representation and interactions. In a corps level simulation the

unit resolution could be at brigade or even division level, depending on the

analysis questions to be addressed. The consequent reduction in numbers of

units and interactions would substantially reduce running time, but at a cost

of detail

In any simulation application using a technique as unfamiliar as object-

oriented programming, it is recommended that one or more levels of model

simplifications be developed and maintained. This allows testing of one-sided

effects or one-on-one interaction before testing in a full two-sided, many-on-

many environment. In the initial simulation development, this is a natural

occurrence as the actors and behaviors are incrementally created and tested.

Maintenance of stages of the simulation development in archival form help

newcomers become familiar with the application of the techniques and the

process being simulated.4Due to the processing limitations, a recommendation for full-scale

implementation of any AMIP models in object-oriented programming does not

appear to be in order at this time. RAND is investigating techniques to

overcome the problems by using distributed processing. Another answer may
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lie in the use of LISP machines. The increased costs for the additional or

more advanced processors may however put the technique out of consideration

for use in some simulation applications, at least in the near-term.

5.3 Recommendations

It is recommended that a more detailed evaluation of object-oriented

programming be supported by the Army. This evaluation should investigate

improved efficiencies and developments in ROSS, the balance between the use

of object-oriented programming and other programming in the AMIP

hierarchy, and the applications of other language-systems (e.g. FLAVORS,

LOOPS) incorporating object orientation.

A second recommendation is that research on processing techniques such

as that being conducted by Rand be supported by the Army so that current

processing limitations can be overcome.

A third recommendation is that the Army should build up an

understanding of artificial intelligence, in particular developing techniques

such as object-oriented programming in order to get the most use of their

application now and in the future.
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GLOSSARY

ACTORS An Object Oriented Language
Al Artificial Intelligence
AMIP Army Model Improvement Program
AMMO AMIP Management Office
ANALYST An expert system for processing intelligence

returns

BEM Battlefield Environment Model

CAMIS Command and Management Information System
2(Laboratory)

C2  Command and Control
CM/CB Counter-mortar/Counter-battery
COMINT Communications Intelligence

DIRECTOR An Object Oriented Language

ELINT Electronic Intelligence
EUNICE A software package allowing UNIX to run as a

VMS jot)

FA Field Artillery
FLAVORS An Object Oriented Language
FRANZLISP A LISP dialect
IMINT Imagery Intelligence

INTERLISP A LISP dialect
IPL Intelligence Processing Laboratory

LISP A symbolic manipulation computer language
LOGO An Object Oriented Language
LOOPS An Object Oriented Language

MACLISP A LISP dialect
MTEG MITRE Threat Event Generator
MTI Moving Target Intelligence

. PARC (Xerox's) Palo Alto Research Center

ROSS Rule Oriented Simulation System

SCORES Scenario Oriented Recurring Evaluation System
SCIF Secme Compartmented Information Facility
SIMULA An Object Oriented Language
SMALLTALK An Object Oriented Language
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GLOSARY

(ConId}

SPL Secure Processing Laboratory

SWIRL Simulated Warfare in the ROSS Language

UNIX A family of computer operating systems

VAX VAX 11/780 Computer
VMS VAX Operating System
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